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Summary

Simple lower bounds for A-, D-, E- and L-efficiency of some two-way
elimination of heterogeneity designs are derived. The bounds are obtained
for treatment effects on the basis of the eigenvalues of information matrix
C with respect to the diagonal matrix R.
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1. Introduction

Any arrangement of v treatments in b1 rows and b2 columns is called a
two-way elimination of heterogeneity design. Let r = (r1, ..., rv)

′
, k1 =

(k11 , ..., k1b1
)
′

and k2 = (k21 , ..., k2b2
)
′

denote a vector of treatment replica-
tions, a vector of row sizes and a vector of column sizes, respectively. Let
R, K1 and K2 be the diagonal matrices with the successive elements of r,
k1 and k2 on their diagonals. Moreover, let N1 be the v×b1 treatment-row
incidence matrix, let N2 be the v× b2 treatment-column incidence matrix.
The C-matrices of the two related subdesigns are

Cs = R−NsK−1
s N

′
s (1)

with s = 1 for the treatment-row subdesign and s = 2 for the treatment-
column subdesign.

In this paper we consider designs with information matrix for the treat-
ment effects defined by Berube and Styan (1993):

C = ξ1C1 + ξ2C2 − ξ0C0, (2)

where ξ1 > 0, ξ2 > 0, and ξ0 > 0, C0 = R − rr
′
/n and n is the number

of experimental units. Let D (n, v, b1, b2, rmin, rmax, k1max , k2max , h) denote
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the set of two-way elimination of heterogeneity designs whose C-matrix
admit a representation in the form (2), where rmin = min

1≤i≤v
ri, rmax =

max
1≤i≤v

ri, k1max = max
1≤j≤b1

k1j , k2max = max
1≤j≤b2

k2j , and h is the rank of C

(h ≤ v − 1, if h = v − 1 then a design is said to be connected).
It should be noted that in the theory of experimental designs, A-, D- and

E-optimality is often considered. For example, Filipiak and Szczepańska
(2005) and Moerbeek (2005) considered A-, D- and E-optimality for de-
signs for quadratic and cubic growth curve models and for designs for
polynomial growth models with auto-correlated errors, respectively. A-
optimal chemical balance weighing designs and A-optimal designs under
a quadratic growth curve model in the transformed time interval are pre-
sented respectively by Ceranka et al. (2007) and Filipiak and Szczepańska
(2007). The E-optimality of some two-way elimination of heterogeneity de-
signs, of nested row-column designs, of designs in irregular BIB settings, of
designs with three treatments and of designs under an interference model is
considered by Koz lowska and Walkowiak (1990a), Brzeskwiniewicz (1995),
Bagchi (1996), Morgan and Reck (2007) and Filipiak and Różański (2005),
respectively. Note that A-, D-, E- and L-efficiency for block designs is
described by Brzeskwiniewicz (1996).

2. Results

For a design d ∈ D (n, v, b1, b2, rmin, rmax, k1max , k2max , h) let 0 = εd0 ≤
εd1 ≤ ... ≤ εdv−1 ≤ 1 be eigenvalues of its C-matrix with respect to the
matrix R. Define

φA|R(d) =
∑v−1

i=v−h ε−1
di

, φD|R(d) =
∏v−1

i=v−h ε−1
di

,

φE|R(d) = εdv−h
, φL|R(d) =

∑v−1
i=v−h εdi

.

(3)

A design d is A- or D-optimal if it minimizes the values φA|R(d) or φD|R(d)
among all those possible from some class of designs. A design d is E- or
L-optimal if it maximizes the values φE|R(d) or φL|R(d) among all those
possible from some class of designs. The A-, D-, E- and L-efficiency of a
design d is defined to be

eA|R(d) =
φA|R (d∗A)
φA|R(d)

, eD|R(d) =
φD|R (d∗D)
φD|R(d)

,

eE|R(d) =
φE|R (d)
φE|R(d∗E)

, eL|R(d) =
φL|R (d)
φL|R(d∗L)

,

(4)
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where d∗A, d∗D, d∗E and d∗L are A-, D-, E- and L-optimal designs, respectively.
One problem with these definitions is that optimal designs are known

only for some special cases. Therefore, in the next section simple lower
bounds of (4) will be given as some measures of the efficiencies of design d.
First let us assume that ξ1 + ξ2 − ξ0 ≤ 1.

2.1. Lower bounds of eA/R and eD/R

Note that for d ∈ D (n, v, b1, b2, rmin, rmax, k1max , k2max , h) from (1) and (2)
we have

εdv−1 = p′R−1Cp = ξ1p′p + ξ2p′p−

−ξ1p′R−1N1K−1
1 N′

1p− ξ2p′R−1N2K−1
2 N′

2p− ξ0p′p+

+ξ0p′R−1 rr′

n p ≤ ξ1 + ξ2 − ξ0 + ξ0p′ 1r′

n p = ξ1 + ξ2 − ξ0

because p′p = 1 and p′1 = 0, where p is the eigenvector of matrix R−1C.
From above and (3) we have

φA|R (d∗A) ≥ h

ξ1 + ξ2 − ξ0
and φD|R (d∗D) ≥ 1

(ξ1 + ξ2 − ξ0)h
. (5)

Next, observe that tr
(
R−1C

)
=
∑v−1

i=v−h εdi
≤ h. In many cases a different

method of estimation can be used, namely from (1) and (2) we have

tr
(
R−1C

)
= tr

(
R−1 (ξ1C1 + ξ2C2 − ξ0C0)

)
=

ξ1

v∑
i=1

(
1−

b1∑
j=1

n2
1ij

rik1j

)
+ ξ2

v∑
i=1

(
1−

b2∑
j=1

n2
2ij

rik2j

)
− ξ0

v∑
i=1

(
1− 1′r

n

)
≤

ξ1

(
v −

v∑
i=1

1
rik1max

b1∑
j=1

ndij

)
+ ξ2

(
v −

v∑
i=1

1
rik2max

b2∑
j=1

ndij

)
=

ξ1
v(k1max−1)

k1max
+ ξ2

v(k2max−1)
k2max

= t,

(6)

because 1′r = n and
∑b1

j=1 n1ij =
∑b2

j=1 n2ij = ri.
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Note that

ε̄d =
∑v−1

i=v−h εdi

h
≤ t

h
(7)

and
v−1∑

i=v−h

ε−1
di
≥ h

ε̄d
and

v−1∏
i=v−h

ε−1
di
≥ 1

ε̄h
d

(8)

From (7) and (8) we have, in particular,

φA|R (d∗A) ≥ h2

t
and φD|R (d∗D) ≥

(
h

t

)h

. (9)

From (5) and (9) follows that

phiA|R (d∗A) ≥ max
{

h
ξ1+ξ2−ξ0

, h2

t

}
,

phiD|R (d∗D) ≥ max
{

1
(ξ1+ξ2−ξ0)h ,

(
h
t

)h}
,

which leads (see (4)) to

eA|R(d) ≥
max

{
h

ξ1+ξ2−ξ0
, h2

t

}
φA|R(d)

, eD|R(d) ≥
max

{
h

ξ1+ξ2−ξ0
,
(

h
t

)h}
φD|R(d)

(10)

and therefore two efficiency lower bounds of eA and eD are defined as

e′A|R(d) =
max

{
h

ξ1+ξ2−ξ0
, h2

t

}
φA|R(d)

, e′D|R(d) =
max

{
1

(ξ1+ξ2−ξ0)h ,
(

h
t

)h}
φD|R(d)

.(11)

We have so far considered two-way elimination of heterogeneity designs
fulfilling the condition ξ1 + ξ2 − ξ0 ≤ 1. There exist designs where the
inequality ξ1 +ξ2−ξ0 > 1 is satisfied. For those designs the efficiency lower
bounds of eA and eD are defined as

e′A|R(d) =
max

{
h, h2

t

}
φA|R(d)

, e′D|R(d) =
max

{
1,
(

h
t

)h}
φD|R(d)

. (12)
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2.2. Lower bounds of eE/R

Let row and column designs ds, s = 1,2 with information matrix Cs (see
(1)) contain a row (a column) which consists of m common distinct treat-
ments and 2 ≤ m ≤ v − 1. We assume, by relabelling the treatments and
reshuffling the row (column) as necessary, that the first row and column
consists of m distinct treatments with numbers 1, ...,m and the first row
size is k11 and the first column size is k21 . Then

εd1 ≤
v

m(v −m)
(ξ1Pd1(m) + ξ2Pd2(m)− ξ0Pd0(m)) = Pd(m), (13)

where Pds(m) =
Pm

i=1 ri

rmin

(
1− 1

ksmax

)
− ks1−1

rmax
, s = 1, 2 and the princi-

pal minor of C0 is at least Pd0(m) = m
(

1− mr2
max

n·rmin

)
, because

∑m
i=1 ri −

1
n

∑m
i,j=1 rirj ≤

∑m
i=1 ri− (mrmax)2

n . Note that in the paper of Brzeskwiniewicz

(1995) we have weak equality Pd0(m) =
∑m

i=1 ri −
(

Pm
i=1 ri)2

n . On the other
hand

εd1 ≤
v

v − 1
(ξ1Td1 + ξ2Td2 − ξ0Td0) = Td, (14)

where Tds = 1 − rmin
rmaxksmax

(Brzeskwiniewicz (1995)) and Td0 = 1 − rmax
n

because the i-th diagonal element of C0 is equal to ri −
r2
i
n , and ri −

r2
i
n =

ri

(
1− ri

n

)
≤ rmax

(
1− rmin

n

)
. Note that in the paper of Brzeskwiniewicz

(1995) we have weak equality Td0 = rmax

(
1− rmin

n

)
.

From (13) and (14) we have

φE|R (d∗E) ≤ min{Pd(m), Td}. (15)

Observe that from (15) and (4) it follows that

eE|R (d) ≥
φE|R(d)

min{Pd(m), Td}
(16)

and therefore the lower bound of eE is defined as

e′E|R (d) =
φE|R(d)

min{Pd(m), Td}
. (17)
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2.3. Lower bounds of eL/R

From (3) and (6) we have

φL|R (d∗L) ≤ t. (18)

Formulae (18) and (4) imply that

eL|R(d) ≥
φL|R(d)

t
(19)

and therefore the lower bound of eL is defined as

e′L|R(d) =
φL|R(d)

t
. (20)

3. Examples

We consider the A-, D-, E- and L-efficiency of the designs shown in Tables
1 and 2.

Table 1.

Columns
Rows 1 2 3 4

1 1 2 4 3
2 7 8 5 6
3 5 6 1 2
4 3 4 8 7

Table 2.

Columns
Rows 1 2 3 4 5 6 7

1 3 5 2
2 4 6 3
3 5 7 4
4 5 6 1
5 6 7 2
6 3 7 1
7 2 4 1

In the case of Table 1, d ∈ D(16, 8, 4, 4, 2, 2, 4, 4, 7) with ξ1 = ξ2 = ξ0 = 1
and εd1 = εd2 = εd3 = εd4 = 1

2 , εd5 = εd6 = εd7 = 1 Koz lowska and
Walkowiak (1990b). We calculate φ.(d) occurring in (3) as: φA|R(d) = 11,
φD|R(d) = 16, φE|R(d) = 1

2 and φL|R(d) = 5. But d1 and d2 have no block
with m distinct treatments, thus we calculate only Td occurring in (13)
as Td = 5

7 . Hence according to formulae (11), (17) and (18) we obtain:
e′A|R(d) = 7

11 , e′D|R(d) = 1
16 , e′E|R(d) = 0.7 and e′L|R(d) = 5

12 . We have
obtained a high e′E(d) value, therefore we consider that this design is close
to an E-optimal design, but is far from being an A-, D- and L-optimal
design.
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In Table 2, d ∈ D(21, 7, 7, 7, 3, 3, 3, 3, 6) with ξ1 + ξ2 = 1, ξ0 = 4
9 and

εd1 = εd2 = εd3 = εd4 = εd5 = εd6 = 1 (Agrawal (1966)). From (3) we have:
φA|R(d) = 18, φD|R(d) = 36, φE|R(d) = 1

3 and φL|R(d) = 2. But d1 and d2

have a block with m = 3 distinct treatments, thus we calculate the Pd(3)
and Td occurring in (13) and (14), respectively; Pd(3) = Td = 1

3 . From
(11), (17) and (20) we obtain: e′A|R(d) = 3

5 , e′D|R(d) = (3
5)6, e′E|R(d) = 1

and e′L|R(d) = 3
7 . This design is far from being an A-, D- and L-optimal

design, but it is an E-optimal design (e′E(d) = 1).
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